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A modification of an implicit approximate-factorization finite-difference algorithm applied 
to partial differential equations is presented. This algorithm is applied to the two- and three- 
dimensional Euler equations in general curvilinear coordinates. The modification transforms 
the coupled system of equations into an uncoupled diagonal form that requires less 
computational work. For steady-state applications, the resulting diagonal algorithm retains the 
stability and accuracy characteristics of the original algorithm. The diagonal algorithm 
reduces the storage requirement of the implicit solution process and therefore has an 
important effect on the application of implicit finite-difference schemes to vector processors. 
Results are presented for realistic two-dimensional transonic flow fields about airfoils. 
Computation costs are reduced 24-34%. 

1. INTRODUCTION 

Efficient means of solving the fluid dynamic equations-for example, the inviscid 
Euler equations-are constantly being sought. Various time-accurate methods, both 
explicit and implicit, have been proposed. These schemes have been used for unsteady 
time-accurate computations and also for time-like relaxation to steady-state solutions. 

Implicit finite-difference schemes are attractive because of their stability bounds, 
which allow larger time steps to be taken for either a faster time advance of a time- 
accurate calculation or as a method to increase convergence rates for steady-state 
calculations. Even though explicit schemes have more restrictive stability limitations, 
they generally require less computational work per time step than implicit methods. 

The major portion of the computational work in an implicit finite-difference 
algorithm is contained in the solution of a set of simultaneous equations. When an 
implicit algorithm is applied to a system of partial differential equations, one obtains 
block matrix-vector equations that are complicated and time-consuming to solve. A 
method for uncoupling the solution process,. through a diagonalization of the block- 
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matrix structure, is presented. The method is applied to an implicit approximate- 
factorization algorithm [ 1 ] for the two- and three-dimensional inviscid Euler 
equations in general curvilinear coordinates. The accuracy and stability of the 
diagonal algorithm are examined and contrasted with the original scheme. The effect 
of the diagonal algorithm on the application of implicit schemes to vector computers 
is briefly discussed. Finally, results are presented for realisitic two-dimensional tran- 
sonic flow fields about airfoils, in which the diagonal algorithm is compared with the 
standard implicit algorithm. 

2. IMPLICIT ALGORITHM AND DIAGONAL FORMULATION 

A. Cartesian Equations 

The two-dimensional conservation-law form of the Euler equations cast in 
Cartesian coordinates and nondimensional variables are 

a,q + a,E + a,F= 0, 

where 

Density p is scaled to pm (the free-stream density); Cartesian velocities u and u to 
c, the free-stream speed of sound); and total energy e is nondimensionalized with 
respect to p, CL. Pressure is obtained from the equation of state for a perfect gas, 

p = (y - l)[e - +p(u’ + v’)], (2) 

where y is the ratio of specific heats. 

B. General Curvilinear Coordinates 

If general curvilinear coordinate transformations are introduced into the Euler 
equations, where the inertial Cartesian momenta are retained as the dependent 
variables, the strong conservation-law form is maintained; for example, see Lapidus 
[2], Viviand [3], and Vinokur [4]. For general curvilinear coordinate transformations 

r = m, Y, t), 

rl = r(x, Y, 0, (3) 

5 = t. 
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Applied to Eq. (l), we have 

a,cf + ap!? + a,E = 0, W 
PU 

-” &= J-’ PUU + LP 

L-4 [ 1 Pvu+&?P ’ (etp)U-t,p 
p= J-l 

and 

The metric terms are 

(4b) 

(5) 

with 

C. Standard Solution Algorithm 

The implicit approximate-factorization algorithm applied to Eqs. (1) has been 
described in detail by Beam and Warming [5]. Steger [6] has applied the algorithm 
to the transformed Eqs. (4); details of the equations, the algorithm, and some 
numerical calculations can be found in that report. The algorithm can be first- or 
second-order accurate in time with first-order being used in the following discussions. 
Local time linearization is applied to the nonlinear terms and an approximate 
factorization of the two-dimensional implicit operator is used to produce locally one- 
dimensional operators. 
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An implicit approximate-factorization scheme for Eqs. (4) can be written as 

(I + hQP)(Z + /l&p) Aq”” = -At(@‘” + f&En) = ZP, (6) 

where Aq^” = 4”” - $” and h = At for first-order accuracy in time. 
The Jacobian matrices, A^ and B, are 

aorB= 

kx 
k, + 6 - (y - 2) k,u 
k,v-(y- l)k,u 

(7) 

where 8= k,u + k,v and 4’ = OS(y - l)(u2 + v’), with k = C for A and k = q for ti. 
The derivation of Eq. (6) used a local time linearization of the flux vectors, that is, 

8” + ’ = 8” + /in@ + ’ - 4”) + o(At2), 

~+1=~+l?n(qn+‘-@)+o(At2), 
(8) 

where A^” = (c%?/~~)” and dn = (@/a@,. 
The spatial derivative operators 3, and a, of Eqs. (4) are approximated with 

central finite-difference operators 6, and 6, of either second- or fourth-order accuracy 
(see [5-71). Here, second-order central differences are used for the left-hand (implicit) 
side of Eq. (6) producing block-tridiagonal matrix operators (Z + ZzS,an) and 
(Z + h&d”), w  tc must be inverted sequentially to obtain A@‘. h’ h 

Equation (6) can be used for either time-accurate or steady-state computations. 
For steady-state calculations, Aq^” approaches zero asymptotically with the solution 
satisfying the right-hand (explicit) side of Eq. (6), which is the exact steady-state 
difference equation. 

D. Block-Tridiagonal Matrix Solution Process 

The solution of the matrix equations is obtained through a block lower-upper 
decomposition (LUD) coupled with forward and backward sweeps. The recursion 
algorithm for the block-tridiagonal solution process is found in Isaacson and 
Keller [8]. A relative measure of the work involved in the algorithm can be obtained 
by looking at the operation counts in terms of the total number of multiplies, adds, 
and divides. In two-dimensions, the block size is 4 x 4, and for a typical grid point 
there are 196 multiplies, 155 adds, and 4 divides. (In three-dimensions the block size 
is 5 x 5 and there are 365 multiplies, 325 adds, and 5 divides.) If the work in forming 
a” and 8” is added to the operation counts for the inversion algorithm, the total 
operation count per grid point for the implicit phase of the integration is 410 
multiplies, 326 adds, and 10 divides, a total of 746 operations. The explicit side 
requires 72 multiplies, 48 adds, and 4 divides, a total of 124 operations per grid 
count. 
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An important aspect of the block-tridiagonal solution process is the temporary 
storage requirement of the recursion algorithm. A close examination of the algorithm 
reveals that a temporary storage of one block matrix per grid point is required to 
complete the solution process. In two-dimensions, 16 variables per grid point would 
be required; in three-dimensions 25 would be required. In some cases, this extra 
temporary storage can be restrictive. 

E. Diagonal Form of the Implicit Algorithm 

It is quite evident that the block-tridiagonal matrix solutions constitute the major 
portion of the numerical work of the standard implicit algorithm. Equations (4) are a 
coupled set and thereby produce a 4 x 4 block structure for the implicit operators of 
Eq. (6). If the operators are diagonalized into four scalar operators, the resulting 
system would be more efficiently solved. 

The Jacobian matrices, A and 8, have a set of eigenvalues and a complete distinct 
set of eigenvectors. Similarity transformations (see Warming, Beam, and Hyett [9], 
or Turkel [lo]) can be used to diagonalize a and 8, where 

with 

/It = D [ U, U, U + c(G + <;)l’*, U - c(<; + r;)“‘] 

i 

u 0 0 0 
0 u 0 0 

= 0 0 u + c(@ + Q” 0 
I 

9 Pb) 

0 0 0 u - c(<i + <y* 

/i, = D[ V, V, V + c(q: + q:)“‘, V - c(q: + $)“‘I, 

a(u +* l;,c) Ct(U CC/) 

a(v + L”C> a(v - E$) 1 7 (9c) 

1 --Y- 
p(l;,u-f;,v) a ___ 

[ 

92+c2+cg 1 [ $P+c’- & 

-- (Y- 1) (Y- 1) a (Y-1) 11 

T;‘= 

(y- l)c% (y- l)c-*v -(y- l)c-2 

&J-’ -E*p-’ 
/Kc - (Y - IhI PF c- (Y- l)vl 
-PKc + (Y - lb1 -N&c f (Y - lb1 

(94 
and (x = p/(fic), /? = l/(&c), 8= I?~ u + &v, and, for example, LX = 
k,/(k; + k;)“*. Relations exist between T, and T,, of the form 

N= T;‘T,,, N-l= TilTt, (104 
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i 

1 0 0 0 

A= O ml -pm, w2 
0 pm2 ~~(1 + ml> ~‘(1 -ml> ’ 
0 -pm, ~‘(1 -ml> ~~(1 + ml> I 

(lob) 1 1 0 0 0 
A-l= 0 ml pm2 -pm2 

0 --pm, ~‘(1 +m,) ~‘(1 -m,) ’ 
0 pm, ~‘(1 -ml> ~‘(1 + 4) I 

with m, = (&ii, + &rj,,), m, = (fXXr; - &ii,), and ,u = l/&. Note that A and Z?’ 
are independent of the flow variables. 

After applying the identities, Eqs. (9) in Eqs. (6), we have the diagonal form 

[(T,T,-‘)“+h~,(T,~,T,-‘)“][(T,T,-’)”+~B,(T,~,T,-‘)“]A~“=~”, (11) 

where the identities T, T; ’ = I and T,, T; ’ = I are used. 
A modified form of Eq. (11) is constructed by moving T, and T,, outside of the 

difference operators 6, and 6,, respectively. This results in the “diagonal” form of the 
algorithm 

(12) 

Since T, and T,, are functions of < and r, the modification has introduced an error; 
the error will be examined in Section 3. Equation (12) can be simplified by using the 
relations of Eqs. (10) to produce 

Tf(Z + h&d;) N(I + hd,&)(T,- l)” A$ = It”. (13) 

The new implicit operators, (1+ hS,R,) and (Z + h8,/i,), are still block- 
tridiagonal, but now the blocks are diagonal in form so that the operators reduce to 
four independent scalar tridiagonal operators. This has a large positive effect on the 
solution process discussed below. 

Similar reductions of the block operators have been introduced previously by 
Steger [ 111 (for the conservative law form) and Briley and McDonald [ 121 (for the 
nonconservative form). In these cases the authors point out that the basic structure of 
the “Cartesian form” of the block Jacobian matrices can be rearranged such that the 
block implicit operators reduce to a series of scalar operators and one smaller ranked 
block operator. For instance, in two dimensions, one obtains two scalar tridiagonal 
operators and a 2 x 2 block implicit operator. Unfortunately, the general curvilinear 
transformations destroy the reducible structure of the equations. The diagonal 
algorithm is not so affected by the transformations. 

Yanenko and Kovenja [ 131 have also introduced algorithms which are constructed 
with scalar sweeps. In this case the physical processes are split, where the convective 
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terms give scalar implicit operators and the pressure terms give a block implicit 
operator. 

The solution process for the implicit part of Eq. (13) consists of: (1) S, = 
(T; ‘)“Z?‘, a matrix-vector multiply at each grid point, since T; ’ is known 
analytically; (2) [I + hS,d;) S, = S, , solution of four scalar tridiagonal equations; 
(3) S, = fi-‘S,, a matrix-vector multiply at each point; (4) [Z + hS,,*111]S4 = S,, 
four more scalar tridiagonal equations; (5) A$ = CS,, another set of matrix-vector 
multiplies, and (6) q ++* = 8” + Aq^” to update the solution. This contrasts with the 
two block-tridiagonal matrix solutions required in Eq. (6). 

An operation count for the diagonal form of the implicit algorithm yields 233 
multiplies, 125 adds, and 26 divides, or 384 operations. This is a significant reduction 
from the 746 operations required for the standard algorithm. The net effect is a 
reduction in the total computing costs for the solution of the Euler equations with an 
implicit numerical algorithm. 

F. Three-Dimensional Algorithm 

The three-dimensional Euler equations in generalized coordinates are 

where 

P 
i= J-’ ;I: 

I. PW 
e 

a,cj+a,B+a,P+a,&o 

) E=J 

pU‘ 
NJ+ LP 

I I 1 PVU-+ &P , E=.i 
PWU + t, P 

(e+P>U-t,p 

PW 
puW+ LP 

G= J-’ [ 1 PvW+CyP 3 
ww+ LP 

(e+P)W-C,p 

(144 

PV 
Puv+ rlxP 

1 i I PVVfrlyP 3 
pwv+ I;fyP 

(e+p)V-vtp 

(14b) 

The metric terms are 
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and 

J-’ =x3y,,z3 +xs~g,, +x,Y~z~-x~Y~, -x,,yszs -xsy,,zl. 

The standard implicit algorithm is described in detail in [ 141 and is written as 

(I + hd,.d”)(l+ hS,,s”)(I + h6,e”)dsj = -h(S,6” + S,P” + cY,e”) = Z?‘. (16a) 

with 

A,B,ore= 

kt kc 4 
k,$2 - uf3 k, + B - k,(y - 2)~ k,u - (y- l)k,u 
k,,#’ - 00 k,u - k,(y- 1)~ k,+e-k,(y-2)u 
k,qi’ - we k,w - k,(y- 1)~ k, w - k,(y - 2)~ 

fW#’ - r@/~)l b%b4e/d - 4’1 W,Wd - 0’1 
-(Y- 1)N -(Y--l)q 

k 0 

&u-b- l)k,w W- 1) 
kv-(y- l)k,w k,(y- 1) 

k,+e-k,(y-2)w k,(y- 1) 
WAWd - 4’1 k, + Ye 
-(Y- l)w& 

where 9’ = OS(y - l)(u’ + v2 + w*), 0 = k,u + k,v + k, w, and, for example, to 
obtain A^, k = t. 

The similarity transformations for the Jacobian matrices A, 8, and e are 

A = T,ri,T;‘, B = T,/i, T;‘, C = T&T,-‘, W) 

where 

A, = D[ U, U, U, U + c(<: + <; + t:)1’2, u - ~(4; + (; + {;)“‘], 

2, = D[ F’, V, K V + c(q: + q-; + q;)“‘, v - c(rj: + rj; + t,f)“2], Cl-) 

A, = D[ W, W, W, W + c(C: + t; + t;f)“‘, W - c([; + [; + r;)“‘]. 
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with 

Tk = 

and 

1 [I;, (‘-$I,) 
-p-‘(Ezv - Eyw) 1 

[5 (l-f) 

a(24 -&c) 
a(v - E c) 
ah- J) E 

a 

1 

t;,(y - 1) UC-2 
[ 
k,P-’ 

+ &(y - 1) vc-2 
I 

M;P- l E&J - 1) vc-2 

7’;’ = -p-‘(/Fxw - ~$> 1 +fcy(y- ‘)uc-21 
[K (1 -f) F$’ L-&P-’ 

-p-‘(Eyu - E$) 1 + t;,<y - 1) UC-‘] + t;,(Y - 1) vc-‘1 
B@’ - 4 /Kc-(Y- ‘Nl P(d2 + 4 PW c-(Y- ‘Iv1 

-P[f;,c+(Y+ lhl -Pv$+(Y- l)ul 

[--f;,p-’ + EJy - 1) wc-2] -EJy - 1) cCi 

[f;,p-’ + lqy - 1) WC-21 -r;,<, - 1) c-2 

f;,(y - 1) WC-2 -Ez(y - 1) c-2 

mc- (Y- ‘)wl P(Y - ‘1 

-P[r;zc + (Y - l)wl P(r - 1) 

, (‘7d) 

where 8= KXu + f;y v + l?* w  and, for example, LX = k,..(k: + kz + kz)‘12, etc. 
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Following the same procedure as in the two-dimensional development, that is, 
inserting the identities Eqs. (17) into Eqs. (16) and moving the matrices T, outside 
the spatial difference operators, we obtain the diagonal form 

q(Z + hc@;) fi(Z + h&/i;) &Z + h&li;)(T;‘)“dq^” = l?‘, 

with N= Tt-‘Tn, A-‘= T;‘Ts, P= T;‘Tg, P-‘= T;‘T,,, where 

UW 

m3 -pm, pm4 
m4 1111123 -w3 
m, -Pm2 ,um2 

--pm, pm2 ~‘(1 + ml> ~~(1 -ml> 
--pm, ~‘(1 - 4) iu2(l + 4) I 

The three-dimensional diagonal algorithm requires 448 multiplies, 265 adds, and 
41 divides, a total of 754 operations. The standard algorithm requires 128 1 
multiplies, 1061 adds, and 18 divides, a total of 2360 operations. 

3. ACCURACY AND STABILITY 

A. Steady-State Accuracy 

The spatial accuracy of the standard and diagonalized algorithm for steady-state 
problems (i.e., where A$ goes to zero) is determined by the type of differencing used 
in forming &‘, the steady-state equation. Since the modification that produces the 
diagonal algorithm does not affect H”, both schemes will have the same steady-state 
solution (if we assume that the steady-state solution is independent of the 
convergence path, i.e., that the steady state is unique). 

B. Stability 

One of the advantages of using the diagonal algorithm over the standard algorithm 
is that steady-state solutions, with the same accuracy as for the standard algorithm, 
can be obtained with less computational effort and cost. The question then arises as 
to the stability of the diagonal algorithm. Warming and Beam [ 151 have presented 
the linear stability analysis for the standard scheme when applied to constant coef- 
ficient partial differential equations. Their analysis shows unconditional stability, but 
in actual practice for nonlinear problems with nonperiodic boundary conditions, 
stability bounds have been encountered (although much less stringent ones than the 
explicit stability bounds). For a particular problem, one must rely on numerical 
experimentation to determine the actual stability bounds. In fact, linear stability 
analysis for the three-dimensional delta form of the approximate factorization 
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algorithm shows unconditional instability. The instability, though, is a weak one and 
can be controlled by numerical dissipation. 

For constant coefficient matrices a and I?, the diagonal algorithm reduces to the 
standard algorithm because the eigenvector matrices are also constant. Therefore, the 
linear stability analysis of Warming and Beam [ 151 also holds for the diagonal 
algorithm. Numerical experiments have shown identical stability characteristics for 
the two algorithms. Convergence rates are unaffected and time-step limitations are the 
same for both schemes. 

C. Time Accuracy 

For simplicity, the unsteady characteristics of the diagonal algorithm can be 
investigated by examining the algorithm applied to the one-dimensional fluid dynamic 
equations. The one-dimensional equations are 

a,q + a,E= 0, VW 

where 

q= [e]. ‘=[(gy. (19b) 

(2W 

The standard solution algorithm for Eqs. (19) is 

(Z + h&A”) dQ = -h&En = @ 

with 

Aq= (q”+l -qn), h=At, 

and 

A”= g n- 

0 [ 

0 

aq - 
(y - &,2 -(y !3)u y - 1 . (20b) 

bWd + (Y - WI Meld - (3/2)(~ - WI YU 1 
Equations (20) are first-order accurate in time, when the first-order Euler implicit 

scheme 

Aq= (q”+’ - 4”) = -h&q”+ ’ + o(h2) 

and the second-order local time linearization of the flux vector 

E -“+1=~+A”(qn+1-gn)+o(h2) 

are used. 

(21) 

(22) 
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The diagonalized form of Eqs. (20) are 

X(1 + hSJ,“)(X- ‘)“Acj = i?, 

where 

Pa) 

G-1 

and 

I 
1-$- 1)c-2 (y- 1) UC-* -(y- 1)c-2 \ 

x-‘= p (y-l);-uc 
[ 1 Bb-(Y- lb1 B(Y- 1) * 

P [(Y- l):+uc] -P[c+b- I)ul 13(Y - 1) 1 
First we note that although Eqs. (20) are in conservation-law form, Eqs. (23) are 

not, due to the variable coefficient X in front of the derivative 6,. This nonconser- 
vative form is only for the unsteady part of the equations, whereas the steady-state 
equations (which are unaffected by the diagonalization) remain in conservation-law 
form. The nonconservative nature of Eqs. (23) for unsteady calculation has been 
demonstrated numerically for a one-dimensional shock tube problem (Section 5). 

The effect of the diagonalization on the time accuracy can be examined by 
subtracting Eqs. (23) from Eqs. (20), which produces 

r = hd,[X”/1~(X-‘)“AF] - hPG,[A~(x-‘)” Aq”], (24) 

where the similarity transformation A = XA,X-’ is used to replace A in Eqs. (20). 
Chain rule for discrete differences is used on the first term of Eq. (24) giving 

R = h&.(X”)AI;(X-‘)“A@ + hX”d,[A;(X-‘)“A4”] 

- hX’Y@;(X-‘)” Ap”] + O(h 44” Ax”) (25) 

= h&(X”) A; (X- ‘)n A@ + O(h A@ Axp), 

where the chain rule produces an O(Axp) error depending on the order (p) of the 
difference operator 6,. 
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Now, by Eq. (2 l), A? is O(h) so that 

r = 0(/I*) + O(h2 AXP) = 0(/l*). (26) 

Therefore, the error introduced by the diagonalization is first order in time. 

4. APPLICATION TO VECTOR PROCESSORS 

One important feature of the diagonal algorithm is the reduction in temporary 
storage needed to complete the implicit integrations. As noted in Section 2, for two- 
dimensional calculations a 4 x 4 matrix is needed at each point, a 5 x 5 matrix in 
three dimensions. Each of the implicit operators in the standard algorithm is one 
dimensional and, on conventional machines, where each variable is a point function, 
the temporary storage requirement would be 16 times the maximum number of grid 
points for any direction. On vector machines, the variables are vectors, and the 
storage requirement is multiplied by the vector length. The Illiac IV computer and the 
Cray 1 have vector lengths of 64; for the STAR lOOC, long vectors of the order of 
500 are required. Therefore, the temporary storage requirements quickly swamp the 
memory of the vector machines for any reasonable grid sizes. 

The diagonal algorithm reduces the above requirements by 15/16 for 2-D and by 
24/25 for 3-D, since the operators are scalar, not block, tridiagonals. This reduction 
makes the application of implicit solvers, on vector machines, more reasonable. 

5. RESULTS 

Numerical experiments have been performed comparing the standard implicit 
algorithm with the diagonal form of the algorithm. In all cases, the two algorithms 
compare quite well for convergence, steady-state spatial accuracy, and numerical 
stability. 

In Fig. 1, results of a one-dimensional shock tube calculation are shown for both 

- ANALYTIC 

D DIAGONAL IMPLICIT 
1.0 

n STANDARD IMPLICIT 

.8 T=l.Orec 

.6 
P 

.4 

FIG. 1. Unsteady shock tube results. 
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-.6 

.4 NACA 0012 INVISCID 

M, = 0.8 01= 2” 

.6 - STANDARD IMPLICIT 

V UPPER 

A LOWER I 
DIAGONAL IMPLICll 

FIG, 2. Comparison for NACA 0012. 

the standard and diagonal algorithm. Initially, a density ratio of 5 exists between two 
chambers separated by a diaphragm. After the diaphragm is removed, an expansion 
wave moves to the left and a contact surface and shock move to the right. As seen in 
Fig. 1, both methods predict the correct expansion, contact surface, and shock jumps. 
But in the case of the diagonalized algorithm, the shock speed is off by 5%, which is 
indicative of a nonconservative scheme. The scheme does predict the overall features 
of the flow field correctly and, therefore, seems to be applicable to unsteady flows 
without shocks. 

A two-dimensional implicit airfoil code [6] was modified to the diagonal form and 
used to compare the two schemes. Geometry, application of boundary conditions, 
spatial accuracy, and approximations are discussed in detail in [6]. Computed 
pressure coefficients are shown in Figs. 2 and 3 for two airfoils at Mach number, 
M, = 0.8, and angle of attack, a = 2”. The first (Fig. 2) is for a NACA 0012 airfoil 
and the second (Fig. 3) for a NACA 64A410. In both cases, the solutions are fully 
converged and compare exactly with the solutions obtained with the standard 
algorithm. The convergence history for the second airfoil, the NACA 64A410, is 
shown in Fig. 4. The figure shows the total residual, which is the sum of the square of 
the residuals over all the grid points, plotted against the number of times steps N. A 
slight perturbation in the time step was introduced at N= 300. The convergence of 
both schemes is almost identical even after the perturbation. This confirms that the 
transient part of the solution is being computed by the diagonal algorithm and that it 
is consistent with that of the standard algorithm. In the airfoil calculations an initial 
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NACA 64A410 

M,=0.8 u=2‘ 

- STANDARD IMPLICIT 

v UPPER 

A LOWER 
DIAGONAL IMPLICI‘I 

FIG. 3. Comparison for NACA 64A410. 

free stream condition was used and the solutions developed to the final results. Even 
though the motion of the shock as it develops may be incorrect, due to the nonconser- 
vative nature of the implicit part of the diagonal algorithm, the final converged 
position is determined by the steady-state finite-difference equations which are iden- 
tical for the diagonal and standard algorithms. The residual shown is not sensitive to 
the shock position since it is a global quantity. In any event, the development of the 
solution from arbitrary initial conditions will be almost identical for the two 
algorithms since the finite-difference equations are really not that much different from 
each other. Also, in all cases examined, there was no change in the stability charac- 
teristics when the diagonal form was used. 

Computation times for the cases that were run on a CDC 7600 computer are 
shown in Table 1. Cases 1 and 2 are the two airfoil solutions; they have a consistent 
savings of over 30% in CPU time. Also included is the computation time for a two- 
dimensional inlet calculation [16], which shows a 34% saving in CPU time. The 
difference from the airfoil calculations is due to other changes in the code, such as 
boundary conditions, geometry, and output. 

581/39/2-8 
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TABLE 1 

Run-Time Comparisons 

Case 
No. Body N 

Computer time (set) 

Standard Diagonal 

Saving in 
CPU time 

6) 

1 NACA 0012 
2 NACA 64A410 
3 2-D Inlet 

1 Prop-fan 
2 Hemi-cyl. 

Two-Dimensional Calculation 

1200 855.1 
1200 992.1 
200 174.7 

Three-Dimensional Calculation 

50 347.8 
50 345.0 

580.5 32 
673.1 32 
115.0 34 

266.0 24 
245.4 29 

NACA 64A410 

PII,= 0.8 a= 2" 
INVISCID 

- STANDARD IMPLICIT 

FIG. 4. Residual for NACA 64A410 computation. 
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Finally, preliminary calculations have been made using the three-dimensional form 
of the diagonalization. Here the three-dimensional code of Pulliam and Steger [ 141 
was modified and applied to flow through a prop-fan configuration that has curved- 
twisted propeller blades, and to a hemisphere-cylinder configuration. Details of the 
hemisphere<ylinder calculations can be found in [ 141. Results of the prop-fan 
calculations are as yet unpublished. Computation times for 50 time steps are shown 
in Table 1. These savings are less than what might be expected from the operation 
counts due to the fact that the three-dimensional program on the CDC 7600 is Z/O 
(input/output) bound. Also, the three-dimensional flow field program has a lot of 
overhead computation for boundary conditions, metric calculations, and geometry, 
which lessen the relative savings from a change in the algorithm. 

6. SUMMARY 

A diagonal form of an approximate-factorization implicit finite-difference 
algorithm has been developed. It is more efficient than the standard form yet retains 
many of the original accuracy and stability characteristics of the standard form. The 
algorithm has been applied to the Euler equations in Cartesian and general 
curvilinear coordinates. Results show computer time savings of up to 34% for 
realistic calculations. The new algorithm has an effect on the development of implicit 
schemes for vector computers since it reduces the temporary storage requirements of 
the implicit solution process. 
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